Skip to main content
Log in

Sphingosine-1-phosphate stimulates human Caco-2 intestinal epithelial proliferation via p38 activation and activates ERK by an independent mechanism

  • Articles
  • Signal Transduction
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Sphingosine-1-phosphate (S-1-P) has been identified as an extracellular mediator and an intracellular second messenger that may modulate cell motility, adhesion, proliferation, and differentiation and cancer cell invasion. Widely distributed, S-1-P is most abundant in the intestine. Although S-1-P is likely to modulate various intracellular pathways, activation of the mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase 1 (ERK1), ERK2, and p38 is among the best-characterized S-1-P effects. Because the MAPKs regulate proliferation, we hypothesized that S-1-P might stimulate intestinal epithelial cell proliferation by MAPK activation. Human Caco-2 intestinal epithelial cells were cultured on a fibronectin matrix because fibronectin is an important constituent of the gut mucosal basement membrane. We assessed ERK1, ERK2, and p38 activation by Western blotting with antibodies specific for their active forms and proliferation by Coulter counting at 24 h. Specific MAP kinase kinase (MEK) and p38 inhibitors PD98059 (20 μM) and SB202190 and SB203580 (10 and 20 μM) were used to probe the role of ERK and p38 in S-1-P-mediated proliferation. Three or more similar studies were pooled for the analysis. S-1-P stimulated Caco-2 proliferation and dose-responsively activated ERK1, ERK2, and p38. Proliferation peaked at 5 μM, yielding a cell number 166.3±2.7% of the vehicle control (n=6, P<0.05). S-1-P also maximally stimulated ERK1, ERK2, and p38 at 5 μM, to 164.4±19.9%, 232.2±38.5%, and 169.2±20.5% of the control, respectively. Although MEK inhibition prevented S-1-P activation of ERK1 and ERK2 and slightly but significantly inhibited basal Caco-2 proliferation, MEK inhibition did not block the S-1-P mitogenic effect. However, pretreatment with 10 μM SB202190 or SB203580 (putative p38 inhibitors) attenuated the stimulation of proliferation by S-1-P. Twenty micromolars of SB202190 or SB203580 completely blocked the mitogenic effect of S-1-P. Ten to twenty micromolars of SB202190 and SB203580 also dose-dependently ablated the effects of 5 μM S-1-P on heat shock protein 27 accumulation, a downstream consequence of p38 MAPK activation. Consistent with the reports in some other cell types, S-1-P appears to activate ERK1, ERK2, and p38 and to stimulate proliferation. However, in contrast to the mediation of the S-1-P effects in some other cell types, S-1-P appears to stimulate human intestinal epithelial proliferation by activating p38. ERK activation by S-1-P is not required for its mitogenic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K.; Saito, H. The p44/42 mitogen-activated protein kinase cascade is involved in the induction and maintenance of astrocyte stellation mediated by protein kinase C. Neurosci. Res. 36:251–257; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ajizian, S. J.; English, B. K.; Meals, E. A. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J. Infect. Dis. 179:939–944; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Aliaga, J. C.; Deschenes, C.; Beaulieu, J. F.; Calvo, E. L.; Rivard, N. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277:G631-G641; 1999.

    PubMed  CAS  Google Scholar 

  • An, S.; Zheng, Y.; Bleu, T. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275:288–296; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Basson, M. D.; Li, G. D.; Hong, F.; Han, O.; Sumpio, B. E. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J. Cell. Physiol. 168:476–488; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Basson, M. D.; Modlin, I. M.; Madri, J. A. Human enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor. J. Clin. Invest. 90:15–23; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Blakesley, V. A.; Beitner-Johnson, D.; Van Brocklyn, J. R.; Rani, S.; Shen-Orr, Z.; Stannard, B. S.; Spiegel, S.; LeRoith, D. Sphingosine 1-phosphate stimulates tyrosine phosphorylation of Crk. J. Biol. Chem. 272:16211–16215; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bornfeldt, K. E.; Graves, L. M.; Raines, E. W., et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J. Cell Biol. 130:193–206; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Bourdoulous, S.; Orend, G.; MacKenna, D. A.; Pasqualini, R.; Ruoslahti, E. Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J. Cell Biol. 143:267–276; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Breimer, M. E. Distribution of molecular species of sphingomyelins in different parts of bovine digestive tract. J. Lipid Res. 16:189–194; 1975.

    PubMed  CAS  Google Scholar 

  • Breimer, M. E.; Karlsson, K. A.; Samuelsson, B. E. The distribution of molecular species of monoglycosylceramides (cerebrosides) in different parts of bovine digestive tract. Biochim. Biophys. Acta 348:232–240; 1974.

    PubMed  CAS  Google Scholar 

  • Carpio, L. C.; Stephan, E.; Kamer, A.; Dziak, R. Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells. Prostaglandins Leukot. Essent. Fatty Acids 61:267–273; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Carter, S.; Auer, K. L., Reardon, D. B., et al. Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene 16:2787–2796; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M. H.; Goldsmith, E. J. How MAP kinases are regulated. J. Biol. Chem. 270:14843–14846; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Cuenda, A.; Rouse, J.; Doza, Y. N.; Meier, R.; Cohen, P.; Gallagher, T. F.; Young, P. R.; Lee, J. C. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364:229–233; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, P. G.; Coso, O. A.; Gutkind, S.; Spiegel, S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Davaille, J.; Gallois, C.; Habib, A.; Li, L.; Mallat, A.; Tao, J.; Levade, T.; Lotersztajn, S. Antiproliferative effects of sphingosine-1-phosphate in human hepatic myofibroblasts: a cyclooxygenase-2-mediated pathway. J. Biol. Chem. 2000. 275(44):34628–34633.

    Article  PubMed  CAS  Google Scholar 

  • Derijard, B.; Hibi, M.; Wu, I. H.; Barrett, T.; Su, B.; Deng, T.; Karin, M.; Davis, R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M.; Agius, L.; Yeaman, S. J.; Day, C. P. Inhibition of rat hepatocyte proliferation by transforming growth factor beta and glucagon is associated with inhibition of ERK2 and p70 S6 kinase. Hepatology 29:1418–1424; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gennero, I.; Simon, M. F.; Gaits, F.; Cariven, C.; Rogalle, P.; Fauvel, J.; Chap, H.; Salles, J. P. Effect of sphingosine-1-phosphate and analogues of lysophosphatidic acid on mesangial cell proliferation. Ann. NY Acad. Sci. 905:340–343; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Goetzl, E. J.; Lee, H.; Dolezalova, H., et al. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann. NY Acad. Sci. 905:177–187; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A.; Martin, A.; O'Brien, L.; Brindley, D. N. Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J. Biol. Chem. 269:8937–8943; 1994.

    PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A.; Waggoner, D. W.; O'Brien, L.; Brindley, D. N. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J. Biol. Chem. 270:26318–26325; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gonda, K.; Okamoto, H.; Takuwa, N., et al. The novel sphingosine-1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and-insensitive G-proteins to multiple signalling pathways. Biochem. J. 337:67–75; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C.; Zheng, C.; Martin-Padura, I.; Bian, Z. C.; Guan, J. L. Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine-1-phosphate. Eur. J. Biochem. 257:403–408; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hakomori, S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 265:18713–18716; 1990.

    PubMed  CAS  Google Scholar 

  • Han, O.; Li, G. D.; Sumpio, B. E.; Basson, M. D. Strain induces Caco-2 intestinal epithelial proliferation and differentiation via PKC and tyrosine kinase signals. Am. J. Physiol. 275:G534-G541; 1998a.

    PubMed  CAS  Google Scholar 

  • Han, O.; sumpio, B. E.; Basson, M. D. Mechanical strain rapidly redistributes tyrosine phosphorylated proteins in human intestinal Caco-2 cells. Biochem. Biophys. Res. Commun. 250:668–673; 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269:3125–3128; 1994.

    PubMed  CAS  Google Scholar 

  • Hida, H.; Nagano, S.; Takeda, M.; Soliven, B. Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes. J. Neurosci. 19:7458–7467; 1999.

    PubMed  CAS  Google Scholar 

  • Ishida, T.; Haneda, M.; Maeda, S.; Koya, D.; Kikkawa, R. Stretch-induced overproduction of fibronectin in mesangial cells is mediated by the activation of mitogen-activated protein kinase. Diabetes 48:595–602; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Jasleen, J.; Shimoda, N.; Shen, E. R.; Tavakkolizadeh, A.; Whang, E. E.; Jacobs, D. O.; Zinner, M. J.; Ashley, S. W. Signaling mechanisms of glucagon-like peptide 2-induced intestinal epithelial cell proliferation. J. Surg. Res. 90:13–18; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kato, K.; Hesegawa, K.; Goto, S.; Inaguma, Y. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J. Biol. Chem. 269:11274–11278; 1994.

    PubMed  CAS  Google Scholar 

  • Kawata, Y.; Miizukami, Y.; Fujii, Z.; Sakumura, T.; Yoshida, K.; Matsuzaki, M. Applied pressure enhances cell proliferation through mitogen-activated protein kinase activation ion mesangial cells. J. Biol. Chem. 260:917–922; 1998.

    Google Scholar 

  • Kim, B. Y.; Han, M. J.; Chung, A. S. Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic. Biol. Med. 30:686–698; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. H.; Kim, J. H.; Song, W. K.; Kim, J. H.; Chun, J. S. Sphingosine-1-phosphate activated Erk-1/-2 by transactivating epidermal growth factor receptor in Rat-2 cells. IUBMB Life 50:119–124; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T.; Watanabe, T.; Sato, K., et al. Sphingosine-1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem. J. 348 (Pt 1):71–76; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, Z.; Mukherjee, J. J. Phosphocholine and sphingosine-1-phosphate synergistically stimulate DNA synthesis by a MAP kinase-dependent mechanism. FEBS Lett. 412:197–200; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, U.; Jacob, U.; Engel, K.; Buchner, J.; Gaestel, M. Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBO J. 13:54–60; 1994.

    PubMed  CAS  Google Scholar 

  • Kozawa, O.; Tanabe, K.; Ito, H.; Matsuno, H.; Niwa, M.; Kato, K.; Uematsu, T. Sphingosine-1-phospate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells. Exp. Cell Res. 250:376–380; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A.; Middleton, A.; Chambers, T. C.; Mehta, K. D. Differential roles of extracellular signal-regulated kinase-1/2 and p38(MAPK) in interleukin-1beta- and tumor necrosis factor-alpha-induced low density lipoprotein receptor expression in HepG2 cells. J. Biol. Chem. 273:15742–15748; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis, J. M.; Banerjee, P.; Nikolakaki, E.; Dai, T.; Rubie, E. A.; Ahmad, M. F.; Avruch, J.; Woodgett, J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.; Goetzl, E. J.; An, S. Lysophosphatidic acid and sphingosine-1-phosphate stimulate endothelial cell wound healing. Am. J. Physiol. Cell Physiol. 278:C612-C618; 2000.

    PubMed  CAS  Google Scholar 

  • Lee, O. H.; Kim, Y. M.; Lee, Y. M.; Moon, E. J.; Lee, D. J.; Kim, J. H.; Kim, K. W.; Kwon, Y. G. Sphingosine-1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264:743–750; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.; Duzgun, S. A.; Han, O.; Sumpio, B. E.; Basson, M. D. Matrix-dependent effects of cyclic strain on human intestinal Caco-2 cell proliferation and intracellular signal transduction. Surgical Forum 50:68–70, 1999.

    CAS  Google Scholar 

  • Li, W.; Duzgun, A.; Sumpio, B. E.; Basson, M. D. Integrin and FAK-mediated MAPK activation is required for cyclic strain mitogenic effects in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G75-G87; 2001.

    PubMed  CAS  Google Scholar 

  • Marshall, C. J. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Martinsson, T. Ropivacaine inhibits serum-induced proliferation of colon adenocarcinoma cells in vitro. J. Pharmacol. Exp. Ther. 288:660–664; 1999.

    PubMed  CAS  Google Scholar 

  • McLaughlin, M. M.; Kumar, S.; McDonnell, P. C.; Van Horn, S.; Lee, J. C.; Levi, G. P.; Young, P. R. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J. Biol. Chem. 271:8488–8492; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr. Cell regulation by sphingosine and more complex sphingolipids. J. Bioenerg. Biomembr. 23:83–104; 1991.

    PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr.; Schmelz, E. M.; Wang, E.; Schroeder, J. J.; Dillehay, D. L.; Riley, R. T. Role of dietary sphingolipids and inhibitors of sphingolipid metabolism in cancer and other diseases. J. Nutr. 125:1677S-1682S; 1995.

    PubMed  CAS  Google Scholar 

  • Murthy, S.; Mathur, S. N.; Field, F. J. Tumor necrosis factor-alpha and interleukin-1beta inhibit apolipoprotein B secretion in CaCo-2 cells via the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 275:9222–9229; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, E.; Gotoh, Y. The MAP kinase cascade is essential for diverse signal tranduction pathway. Trends Biochem. Sci. 18:128–131; 1999.

    Article  Google Scholar 

  • Olivera, A.; Spiegel, S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Otterson, M. F.; Sarr, M. G. Normal physiology of small intestinal motility. Surg. Clin. North Am. 73:1173–1192; 1993.

    PubMed  CAS  Google Scholar 

  • Pircher, T. J.; Flores-Morales, A.; Mui, A. L.; Saltiel, A. R.; Norstedt, G.; Gustafsson, J. A.; Haldosen, L. A. Mitogen-activated protein kinase kinase inhibition decreases growth hormone stimulated transcription mediated by STAT5. Mol. Cell. Endocrinol. 133:169–176; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Poulos, J. E.; Weber, J. D.; Bellezzo, J. M.; Di Bisceglie, A. M.; Britton, R. S.; Bacon, B. R.; Baldassare, J. J. Fibronectin and cytokines increase JNK, ERK, AP-1 activity, and transin gene expression in rat hepatic stellate cells. Am. J. Physiol. 273:G804-G811; 1997.

    PubMed  CAS  Google Scholar 

  • Pratt, B. M.; Harris, A. S.; Morrow, J. S.; Madri, J. A. Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. Am. J. Pathol. 117:349–354; 1984.

    PubMed  CAS  Google Scholar 

  • Probstmeier, R.; Pesheva, P. Tenascin-C inhibits betal integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9:101–114; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pyne, S.; Pyne, N. J. The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem. J. 315:917–923; 1996.

    PubMed  CAS  Google Scholar 

  • Pyne, S.; Pyne, N. J. Sphingosine-1-phosphate signalling in mammalian cells. Biochem. J. 349:385–402; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rakhit, S.; Conway, A. M.; Tate, R.; Bower, T.; Pyne, N. J.; Pyne, S. Sphingosine-1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide-3-kinase. Biochem. J. 338:643–649; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Raingeaud, J.; Gupta, S.; Rogers, J. S.; Dickens, M.; Han, J.; Ulevitch, R. J.; Davis, R. J. Pro-inflammatory cytokines and environmental stess cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270:7420–7426; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rouse, J.; Cohen, P.; Trigon, S.; Morange, M.; Alonso Llamazares, A.; Zamanillo, D.; Hunt, T.; Nebreda, A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock protein. Cell 78:1027–1037; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sadahira, Y.; Ruan, F.; Hakomori, S.; Igarashi, Y. Sphingosine-1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc. Natl. Acad. Sci. USA 89:9686–9690; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K.; Ishikawa, K.; Ui, M.; Okajima, F. Sphingosine-1-phosphate induces expression of early growth response-1 and fibroblast growth factor-2 through mechanism involving extracellular signal-regulated kinase in astroglial cells. Brain Res. Mol. Brain Res. 74:182–189; 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K.; Tomura, H.; Igarashi, Y.; Ui, M.; Okajima, P. Possible involvement of cell surface receptors in sphingosine-1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol. Pharmacol. 55:126–133; 1999b.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. M.; Bushnev, A. S.; Dillehay, D. L.; Sullards, M. C.; Liotta, D. C.; Merrill, A. H. Jr. Ceramide-beta-d-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. Cancer Res. 59:5768–5772; 1999.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. M.; Crall, K. J.; Larocque, R.; Dillehay, D. L.; Merrill, A. H., Jr. Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr. 124:702–712; 1994.

    PubMed  CAS  Google Scholar 

  • Seger, R.; Krebs, E. G. The MAPK signaling cascade. FASEB J. 9:726–735; 1995.

    PubMed  CAS  Google Scholar 

  • Simoneau, A.; Herring-Gillam, F. E.; Vachon, P. H., et al. Identification, distribution, and tissular origin of the alpha5(IV) and alpha6(IV) collagen chains in the developing human intestine. Dev. Dyn. 212:437–447; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S.; Foster, D.; Kolesnick, R. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8:159–167; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S.; Milstien, S. Sphingolipid metabolites: members of a new class of lipid second messengers. J. Membr. Biol. 146:225–237; 1995.

    PubMed  CAS  Google Scholar 

  • Stadheim, T. A.; Kucera, G. L. Extracellular signal-regulated kinase (ERK) activity is required for TPA-mediated inhibition of drug-induced apoptosis. Biochem. Biophys. Res. Commun. 245:266–271; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tolan, D.; Conway, A. M.; Rakhit, S.; Pyne, N.; Pyne, S. Assessment of the extracellular and intracellular actions of sphingosine-1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. Cell. Signal. 11:349–354; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Troussard, A. A.; Tan, C.; Yoganathan, T. N.; Dedhar, S. Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol. Cell. Biol. 19:7420–7427; 1999.

    PubMed  CAS  Google Scholar 

  • Vachon, P. H.; Simoneau, A.; Herring-Gillam, F. E.; Beaulieu, J. F. Cellular fibronectin expression is down-regulated at the mRNA level in differentiating human intestinal epithelial cells. Exp. Cell Res. 216:30–34; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Velling, T.; Tiger, C. F.; Ekblom, P.; Gullberg, D. Laminin alpha chains in colon carcinoma cell lines: detection of a truncated laminin alpha1 mRNA in Caco-2 cells. Exp. Cell Res. 248:627–633; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.; Spiegel, S.; Sturgill, T. W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J. Biol. Chem. 270:11484–11488; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yatomi, Y.; Welch, R. J.; Igarashi, Y. Distribution of sphingosine-1-phosphate, a bioactive sphingolipid, in rat tissues. FEBS Lett. 404:173–174; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C. F.; Sanders, M. A.; Basson, M. D. Human caco-2 motility redistributes FAK and paxillin and activates p38 MAPK in a matrix-dependent manner. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G952-G966; 2000.

    PubMed  CAS  Google Scholar 

  • Zhang, H.; Desai, N. N.; Olivera, A.; Seki, T.; Brooker, G.; Spiegel, S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol. 114:155–167; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. Basson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamilselvan, V., Li, W., Sumpio, B.E. et al. Sphingosine-1-phosphate stimulates human Caco-2 intestinal epithelial proliferation via p38 activation and activates ERK by an independent mechanism. In Vitro Cell.Dev.Biol.-Animal 38, 246–253 (2002). https://doi.org/10.1290/1071-2690(2002)038<0246:SPSHCI>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0246:SPSHCI>2.0.CO;2

Key words

Navigation